
Introduction
The software developer who needs to have an application parse command line
arguments normally reaches straight for the trusty getopt(3) library. getopt has been a
standard feature on development workstations for many years, and the current GNU
version is installed on Linux workstations as a matter of course.
However, getopt is starting to look like a victim of its own success. Weighed down by
new features, it has become somewhat unwieldy. It could be said that when a
developer needs to add various punctuation marks to strings in order to invoke
functionality, things have gotten a little out of hand.
For Python developers there is now a modern alternative to getopt. It’s called
optparse, and is available as part of the core language distribution from Python
version 2.3 onwards. Written by Greg Ward, optparse claims to allow you to “add
intelligent, sophisticated handling of command-line options to your scripts with very
little overhead.” This article looks at optparse, its usage and possibilities.

Basic Usage
optparse, like most Python modules, has an object based interface. Its usage involves
three steps. Firstly, an option parser object is created. Next, method calls to that parser
object are used to configure it to expect a set of command line options. Finally, the
parser’s parse_args() method is called. The parse_args() method examines the
application’s command line arguments to ensure they match the set expected, then
builds a result object. This result object is returned containing a set of attributes, one
for each command line argument expected. The value for each attribute is the value
found on the command line.
Basic usage of optparse is easy to describe, but the easiest way to explore the details
is to start looking at some code, so let’s do that. Step one is to create a parser object,
and although the class constructor takes some optional arguments, the simplest code is
normally sufficient:

from optparse import *
optParser = OptionParser()

The next step is to tell the parser about the options it can expect to receive. This is
done with the add_option() method. add_option() allows the developer to add a short
format option (e.g. -v), a long format option (e.g. --verbose), or an option that takes
both formats. A call to the add_option() method starts with the strings that represent
the option on the command line:

optParser.add_option(“-f”, “--file”, …

The … represents the additional arguments that control the behaviour of the parser
when it sees the option. It is best to use Python’s named argument syntax for these
additional arguments since they can be many and varied.
The next argument to specify should be the action, which tells the parser what action
to take when it comes across the option in the command line. We’ll look at some of
the available actions in a moment, but for now we’ll use the most often used one –
“store”:

optParser.add_option(“-f”, “--file”,
 action=”store”, …

The store action tells the parser to take the next command line argument and store it in
the parser’s result ready for later use. The parser’s result is an object which will have
an attribute for each option that gets stored. For a store action, the name of the
attribute is mandatory, and is therefore the next thing to specify with a dest argument:

optParser.add_option(“-f”, “--file”,
 action=”store”, dest=”filename”, …

The parser also needs to be told what type of data to expect, with string, integer and
float being the most popular. For this example, I need to specify a string:

optParser.add_option(“-f”, “--file”,
 action=”store”, dest=”filename”, type=”string”,
 …

The final argument, which should really be on every option’s configuration, is some
help text:

optParser.add_option(“-f”, “--file”,
 action=”store”, dest=”filename”, type=”string”,
 help=”Input filename, or ‘-‘ for stdin”)

Help is required because, given a set of help strings, the optparse module is able to
automatically build a nicely formatted help page from the options it knows about.
This very handy feature prevents the developer having to maintain a separate “usage”
string, which can easily get out of sync with the actual options accepted.
The add_option() method of the optParser object can be called as many times as is
necessary to build up the complete set of command line options the application takes.
Once they’ve all been added, the parser can be invoked with a call to its parse_args()
method. By default this method assumes the command line arguments are in the argv
list, which is almost always the case, so typically the parse is invoked with:

(options, remainingArgs) = optParser.parse_args()

When this is executed the parser will examine the command line, stopping with an
appropriate error if the options provided don’t match those expected. If everything
parses correctly, the returned “options” object will contain details of the command
line options found, and “remainingArgs” will be a list containing the rest of the
arguments on the command line.
For the above example, if a command line like:

prog.py --file data.txt input.pdf

is parsed, the options object will have a filename attribute with the value data.txt,
and remainingArgs will be a list with the single element input.pdf.
As a bonus, a help option is provided automatically for the “-h” and “--help”
command line options:

> prog.py --help
usage: prog.py [options]

options:
 -h, --help show this help message and exit
 -fFILENAME, --file=FILENAME
 Input filename, or ‘-‘ for stdin

The help text can be fine tuned, but the default output is normally fine for most
applications.
It can be seen from the above example that building sets of command line options
with optparse is really quite easy. Let’s look at some more examples which show
some more details, and a few of the more powerful options.

Details and Features
You may have noticed in the help text generated for the above example that the word
“FILENAME” appeared automatically. It actually came from the name given for the
destination attribute, which is converted to uppercase, then used by default. This often
makes sense as long as the destination attribute has a sensible name, but sometimes it
needs specifying. You use the metavar argument for this. For example, this option
takes an integer as a weight, but prints KILOS in the help text:

optParser.add_option("-w", "--weight",
 action="store", type="int", dest="weight",
 metavar="KILOS",
 help="Required weight")

Another occasionally useful option is nargs, which specifies the number of arguments
on the command line which the option “consumes”. For example:

optParser.add_option("-r", "--range",
 action="store", type="int", dest="range",
 nargs=2,
 help="Range (2 values, start and end)")

This example expects to see a --range argument on the command line followed by two
integers. Both those integers will be consumed by the parser and the result attribute
will contain them in a two element list.
So far we’ve only looked at the “store” action. Another useful action is “store_true”
which is used to handle boolean arguments, such as the traditional –v for verbose
output:

optParser.add_option("-v", "--verbose",
 action="store_true", dest="verbose",
 default=False,
 help="Provide extra information")

No type is needed here since store_true can only work with boolean values. There is,
however, another argument in here we haven’t seen before: the default value, which
works pretty much as you’d expect. Without it, an command line argument which is
either not supplied, or which doesn’t have an associated value, gets set to the Python
built in value of “None”.
The “store_true” action has an inverse called “store_false”, which is used to switch
off a normally on boolean value. Coupling two options together with the same
destination allows an interesting tri-state sort of logic value:

optParser.add_option("-c", "--colour",
 action="store_true", dest="colour",
 help="Use full colour settings")
optParser.add_option("-m", "--monochrome",
 action="store_false", dest="colour",
 help="Disable full colour")

With these two options, specifying a “-c” on the command line sets the colour result
to True, while specifying “-m” sets it to False. Since there is no default in either
option, specifying neither “-c” nor “-m” on the command line leaves the colour result
at None.
The “count” action counts the number of times an option is seen on the command line.
This would typically be used for increasing something like a debug level. The more
times the option is specified, the higher the level should be:

optParser.add_option("-d", "--debug",
 action="count", dest="debug",
 help="Increase debugging level")

Given this option and a command line with “-d -d -d” on it, the result object would
have a debug attribute with a value of 3.
Alternatively, the “store_const” action can be used to set the result object’s attribute to
a predefined constant value based on an option. For example, to set a optimisation
level, you might use:

optParser.add_option("-n", "--no-optimisation",
 action="store_const", dest="optlevel",
 const=0,
 help="Turn off optimisation")
optParser.add_option("-o", "--optimise",
 action="store_const", dest="optlevel",
 const=1,
 help="Turn on optimisation")
optParser.add_option("-O", "--full-optimisation",
 action="store_const", dest="optlevel",
 const=2,
 help="Use maximum optimisation(experimental)")

which would set the optlevel attribute to 0, 1 or 2, based on the command line
containing –n, -o or –O.
The “append” action takes a number of command line arguments of the same type and
builds a list from them. Here’s an example that builds a list of user names, as specified
on the command line:

optParser.add_option("-u", "--user",
 action="append", dest="user_list",
 help="Effected user name(repeat as required)")

Given a command line containing “--user fred --user bert --user john”, this will return
a result attribute of user_list with a value of [‘fred’, ‘bert’, ‘john’].
There is one more feature optparse has which is worth discussing, but this one isn’t an
action - it’s a type called “choice”, and is paired with a standard store action. The
choice allows you to specify a number of choices, and the user will receive an error if
they supply the option with an argument that isn’t in the allowed choice selection:

optParser.add_option("-U", "--unit",
 action="store", type="choice", dest=”unit”,
 choices=["in", "mm"],
 help="Unit to use: in=inches, mm=millimetres")

The choice type only works with strings.

Advanced Features and Callbacks
There are other advanced features of optparse which can be useful in special
circumstances. Two of the most useful are option groups and callbacks.
Option groups allow you to logically group a set of options together. Although all
options are actually created equal, and none get any preferential treatment at parse
time, it sometimes makes sense to group a few of them. This grouping only happens
on the help screen, but it can help to show related features, or isolate dangerous or
rarely used options. To use the grouping facility, create an OptionGroup object, add
your options to it in the normal way, then add the group to the parser:

sGroup = OptionGroup(optParser, "Specialised options",
 "The following options are specialised. "
 "Don't change them unless you know what "
 "you are doing")
sGroup.add_option("-p", "--pi",
 action="store", type="float", dest="pi",
 default=3.141592,
 help="Value for pi")
optParser.add_option_group(sGroup)

This causes the help screen to look like this:

usage: prog.py [options]

options:
 -h, --help show this help message and exit
 -fFILENAME, --file=FILENAME
 Input filename, or '-' for stdin
 Unit to use: in=inches, mm=millimetres

 Specialised options:
 The following options are specialised. Don't change them unless
 you know what you are doing
 -pPI, --pi=PI Value for pi

The other advanced feature of optparse that is sometimes useful is the idea of
callbacks. Callbacks are used when the standard argument parsing features aren’t
quite what you need. The principle is the same as all callback style operations: you
supply a piece of code that the parser can call back to when it encounters something it
can’t deal with. Callbacks can get pretty complicated, and the fine details are beyond
the scope of this article. However, a simple example might be where two options are
related – say maximum and minimum values. The requirement might be that if the
minimum is supplied, the maximum must be supplied after it, and that the minimum
value must be lower than the maximum. The options to handle this might look like
this:

optParser.add_option("-M", "--min",
 action="callback", type="int", dest="min",
 callback=checkMinMax,
 help="Minimum. Maximum must follow")
optParser.add_option("-X", "--max",
 action="callback", type="int", dest="max",
 callback=checkMinMax,
 help="Maximum. Must be preceded by minimum")

Here, the action is “callback” and the callback argument names a function called
checkMinMax. The checkMinMax function is called with a set of parameters that
allows it to examine the options provided. For my example criteria, the checkMinMax
function might look like this:

def checkMinMax(option, opt, value, parser):

 if option.dest == "min":
 for nextOpt in parser.rargs:
 if nextOpt == "--max" or nextOpt == "-X": break
 else:
 raise OptionValueError, \
 "Maximum value required when minimum”
 “ value is specified"

 if option.dest == "max":
 if parser.values.min == None:
 raise OptionValueError, \
 "Minimum value expected before maximum value"
 if parser.values.min >= value:
 raise OptionValueError, \
 "Minimum value must be less than maximum value"

 setattr(parser.values, option.dest, value)

This code handles both the maximum and minimum options. When it is called with
“--min” it scans the remaining options on the command line to ensure a “--max” is
following along somewhere. When it is called with “--max” it ensures a “--min” has
already been seen, and that the minimum value supplied was less than the provided
maximum value.

Conclusion
The venerable getopt library is still the standard option parsing solution for most
languages, and still works with Python where it is needed for legacy code. However,
for new Python applications, the power, convenience and relative simplicity of the
optparse library should ensure that it replaces getopt as the foremost solution to the
option parsing problem. It has been designed to be extensible and so shouldn’t suffer
from the feature creep which has bogged down its predecessor. It is surely only a
matter of time before software libraries similar to optparse start replacing getopt in
other development languages.

Sidebar – Extending the optparse Module
The built in functionality of optparse makes it flexible enough to deal with the
majority of option parsing requirements the average application might have. Its
callback mechanism provides a comprehensive way of providing extra functionality to
suit the unusual cases. However, there are always applications that require
extraordinary (or just plain odd) features which a standard library like optparse can’t
fulfil out of the box. To meet these requirements optparse can be extended using
Python code that implements new features and adds them to the module structure so
they can be used as, and alongside, the standard features. This is an advanced topic
that is way beyond the scope of this article, but it’s worth having a quick look at the
idea in order to understand the possibilities.
The most common extending requirements are the additions of new data types and
new actions which dictate what to do with the data supplied. For example, you could

add a data type of “url” to the list of standard types, then provide a function that
examines the supplied option string to ensure it fits your application’s idea of a valid
URL. Once installed, your url data type could be used in add_option() method calls
just like the standard types.
There are other reasons to extend the module. Perhaps you’d like to replace the layout
of the generated help page? Perhaps you’d like to deal with option errors in some way
other than just exiting the program? Perhaps you’d like to replace the hyphen option
specifier (e.g. –d) with a more DOS-like slash specifier (e.g. /d). All of these are
possible by subclassing the optparse classes and reimplementing the areas which need
adjusting to meet your application requirements.

	Introduction
	Basic Usage
	Details and Features
	Advanced Features and Callbacks
	Conclusion
	Sidebar – Extending the optparse Module

