
The canvas widget in the Tk toolkit is a powerful free software tool for creating and
manipulating structured graphics.

The Tk Canvas Widget
The canvas widget in the Tk Graphical User Interface toolkit is a free software tool
used to present graphical data. Like the Tk text widget, which I discussed in my
previous article, the canvas widget is accessible from most modern scripting
languages including Tcl, Perl and Python. It provides those languages with a best of
breed facility for structured graphics work.

A canvas widget can be thought of as a blank piece of paper, upon which can be
drawn lines, shapes, text, images and other Tk widgets. These items, once drawn, can
be reconfigured in order to change their positions, colour, size, format or contents.
They can also be given abilities to respond to inputs from the user or to react to
changes to data manipulated elsewhere in the script.

The canvas widget isn’t a solution to any particular problem; rather it is an extremely
flexible tool which allows developers to quickly and easily build solutions to all sorts
of problems. This article will describe some of the facilities it provides, and suggest
some of the uses those facilities can be put to.

Items - The Building Blocks
The basic idea when using the canvas widget is to draw on it what are known as
items. An item can be a line, an image, some text, one of a number of geometric
shapes, and so on. See the sidebar for a description of the item types which can be
drawn and manipulated. Figure 1 shows a screenshot of a canvas widget displaying
some of these items.

Item type Description

Arc An arc shaped region, empty or filled

Bitmap A simple, two colour image as is often used for an icon

Image A full colour image such as a JPEG image

Line A line or sequence of lines, straight or bezier smoothed

Oval An oval or circle, empty or filled

Polygon A multi-sided, irregular shaped region, empty or filled

Rectangle A rectangle or square, empty or filled

Text Some text, either static or editable

Window A Tk widget or set of widgets

Other A user defined item type which must be coded in C

Exactly how an item is drawn depends on the options it is configured with. There are
many dozens of options available and this article will discuss and demonstrate some
of them. See the canvas widget man page for a comprehensive list of all the options
available.

IDs, Tags and Binding
When an item is drawn on a canvas it becomes an independent entity. Each individual
item is given a unique ID which the developer can use to reconfigure the item’s
options. When any of an item’s options are changed, the canvas widget will ensure the
item is redrawn with its new configuration. Not only does this redrawing happen
immediately, it is also quick enough to support animations and direct mouse control of
hundreds or possibly thousands of items.

As well as their unique Tk-assigned ID, items can also be tagged with one or more
names chosen by the developer. Tags work in the same way as those offered by the Tk
text widget. As well as providing an easier way to reference a single item (a sensible
name instead of a number), this tagging mechanism also allows items to be logically
grouped together. All items given the same tag can be treated as one single item.

Once an item has been given one or more tags, the canvas widget allows pieces of
code to be bound to those tags. This is the feature of the canvas widget which enables
dynamic behaviour. I covered the tag and bind approach in some detail in my article

on the Tk text widget, and since the principles and implementation are virtually
identical for the canvas widget I won’t repeat the information here. A simple example
of tag and bind applied to a canvas item should suffice:

.canvas create line 0 0 100 100 –tag diagonal_line

.canvas bind diagonal_line <Double-Button-1> {
puts “Leave that alone!”

}

This creates a line item on the canvas from point 0,0 to point 100,100 and tags it with
the name diagonal_line. If the user double clicks mouse button one on the line (or any
other item with the tag diagonal_line) a message gets printed. Most uses of the canvas
widget use this tag and bind approach extensively

Developing Applications with the Tk Canvas Widget
Given a problem which requires a graphical solution, the Tk canvas widget is often
the first tool experienced script writers reach for. Complex problems can often be
solved using a canvas widget and a few dozen lines of script. Figure 2 shows a
screenshot of a script which uses a canvas to present an interactive editor for the
shapes of the arrowheads which can terminate line items. This program is part of the
demonstration suite which comes with Tcl/Tk, and takes about 200 lines of code.

Useful as the canvas widget is for small applications and tools, it also has the
flexibility and scalability to work well as a solution to enterprise level problems. Let’s
consider, using an example, how a canvas widget can be used to solve a requirement I
once came across while working in the oil industry.

An Example script
Consider an oil refining installation, where oil is pumped through a series of machines
under the control of a number of valves. As a software developer you might have
written the code which drives the machines and their controlling valves, and now
you’d like to write a graphical front end where the operator can click on a valve or
machine, and have it open or close, start or stop.

I have written a script to demonstrate how the Tk canvas widget can be used to
implement a solution to just such a scenario. See the resources section for the URL
where the script can be downloaded. Figure 3 shows a screenshot.

In my simple, fictitious oil installation there are 4 machines: a pump, a filter, a refiner
and a machine for taking oil samples. These are all controlled by a set of valves, any
one of which can be open, closed or in the process of moving. There’s also a
temperature sensor which can be positioned over any point of the installation.

The demonstration script enables the graphical representations of the machines and
valves to respond to mouse clicks, and the temperature sensor to be moved around. In
a real world scenario, integrating the machine and valve controlling code with a front
end like this would be a fairly straightforward task.

Let’s have a closer look at how the canvas widget is used to represent and control this
hardware.

The machines
The machines are drawn on the canvas as a simple rectangle with the name as a text
string inside it. The rectangle is filled with a colour to indicate the machine’s status.

.canvas create rect [list $x $y $w $h] \
-tag [list machine $name] -width 3 -fill green

.canvas create text [expr $x + $w/2] [expr $y + $h/2] -text $text \
-tag [list machine $name] -anchor c -font $font]

The text is placed in the calculated centre of the rectangle. Note how both items are
given two tags -- “machine” and the actual machine name itself. The machine tag puts
the items in a group which includes all machines. This is ensures a mouse click on
any item which is part of any machine is caught and handled by the correct piece of
code. This is the binding:

.canvas bind machine <Button-1> { operateMachine %W [%W canvasx %x] \
 [%W canvasy %y] }

In a real situation, the operateMachine procedure would call the code which drives the
machine hardware. In my example I just change the status of the machine in the
script, which in turn changes the colour of the machine in the display.

The valves
The valves are represented on screen by an icon made of 4 triangles. The colour of
these triangles shows whether the valve is open, closed or moving. I draw a valve as 4
filled polygon items, each triangle shaped. These 4 polygons are given a shared tag so
I can control a valve icon with one command when necessary. Each polygon is also
given a unique tag so I can control the colour of each individual triangle.

Each valve icon is wrapped in an invisible box which is sized and placed so it just
encloses the 4 triangle items. The purpose of this item is to catch mouse clicks.
Without it, the user might try to click on the valve icon, but might actually hit one of
the gaps between the triangles, in which case the mouse click would be ignored.
Using an invisible wrapper item over the top of the displayed items is a common
technique for ensuring all mouse clicks are caught.

The canvas widget has a useful subcommand which returns the coordinates of a box
which just encloses the specified item or tagged items. For example, to get the
bounding box which encloses the 4 triangles which make up the instream valve:

set boxCoords [.canvas bbox instreamValve]

Given the information in boxCoords, an unfilled polygon item with line width of zero
pixels can be placed over the valve icon. It’s this polygon item which the valve
handling code is bound to.

Temperature Sensor
The temperature sensor is drawn as a small red rectangle item at the intersection of
two dashed lines:

.canvas create line $x $top $x $bottom -width 2 \
-tag [list sensor_v sensor_line sensor] -dash { 2 2 }

.canvas create line $left $y $right $y -width 2 \
-tag [list sensor_h sensor_line sensor] -dash { 2 2 }

.canvas create rect [expr $x-3] [expr $y-3] [expr $x+3] [expr $y+3] \
-tag [list sensor_box sensor] -width 1 -fill red

The dash pattern a line item can be drawn with is configurable. In this case I’ve used a
pattern of 2 pixels on and 2 pixels off. Regularly updating a dash pattern is a simple
way to animate the marching ants effect found on many selection mechanisms.

The canvas contains a binding for dragging (i.e. mouse motion with button 1 pressed)
these items, so the sensor can be moved by dragging it directly, or by dragging the
lines which control it:

.canvas bind sensor <B1-Motion> \
{ operateSensor %W move [%W canvasx %x] [%W canvasy %y] }

This binding applies to all items which make up the sensor graphic – both lines and
the centre rectangle. In order to find out which item is being dragged, the
operateSensor code asks the canvas which item is currently under the mouse pointer
using the special “current” tag:

set draggedItem [.canvas find withtag current]

In a real application, the operateSensor code would call the hardware which
repositions the sensor. The sensor would also be polled on occasion, whereas in my
demonstration script a random number is used for temperature display purposes.

Tcl Traces
My demonstration script uses Tcl’s very useful ability to attach a procedure to variable
accesses. This “tracing” is often used when a canvas widget is employed to maintain a
graphical representation of a data set in a program. Tracing can be used to ensure that
whenever data is changed, the routine to update the canvas is called automatically. A
simple example from my demonstration script is the way I keep the sensor status text
up to date. A trace is set in place:

trace add variable sensorState write setSensorText

which ensures that whenever the variable sensorState is written to, the procedure
setSensorText is called automatically. This procedure updates the text displayed on
the canvas widget. Other languages have features which can be used in similar ways.
Users of Perl/Tk might want to look at Perl’s tie mechanism, for example.

Other Interesting Canvas Features
The canvas widget has a few more features in its toolbox which can occasionally
prove huge time savers.

Scaling
All items on a canvas which have been drawn using vectors (i.e. items with specified
coordinates such as polygons and rectangles) can be dynamically scaled – i.e. resized.
A single command can be issued to the canvas widget to request that it rescale any or
all such items. For example, this command will rescale all the items on the canvas by
1.1:

.canvas scale all 0 0 1.1 1.1

In other words, this single line of code is a +10% zoom facility.

Postscript Output
The canvas widget also has a built in ability to generate a postscript representation of
its current display. There are many options available to control the postscript output.
The simplest way of getting a postscript dump of a canvas display is to call the
postscript generation procedure with its default parameters from a specified keypress:

bind .canvas <KeyPress-p> “.canvas postscript –file /tmp/canvas.ps”

Conclusion
The Tk canvas widget has largely succeeded in hitting the perfect balance point
between functionality and usability. It provides pretty much everything similar
widgets from other toolkits do, plus a whole lot more in most cases. Yet, partnered
with any one of a number of scripting languages, it is simple to use and incredibly
efficient in terms of developer effort and lines of code needed to drive it.

Given its ability to provide solutions to a wide range of problems, the Tk canvas
widget is a tool that all application software developers should be familiar with.

References
Tcl/Tk headquarters:

http://www.tcl.tk

The Tcl/Tk canvas widget man page:

http://www.tcl.tk/man/tcl8.4/TkCmd/canvas.htm

The Tkinter canvas widget reference page:

http://www.pythonware.com/library/tkinter/introduction/canvas.htm

Demonstration scripts used in this article:

ftp://ftp.scc.com/somewhere1.tar.gz

The Wiki canvas widget page, with lots of uses and examples:

http://mini.net/tcl/canvas

ftp://ftp.scc.com/somewhere1.tar.gz
http://www.pythonware.com/library/tkinter/introduction/canvas.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/canvas.htm
http://www.tcl.tk/

	The canvas widget in the Tk toolkit is a powerful free software tool for creating and manipulating structured graphics.
	The Tk Canvas Widget
	Items - The Building Blocks
	IDs, Tags and Binding
	Developing Applications with the Tk Canvas Widget
	An Example script
	The machines
	The valves
	Temperature Sensor
	Tcl Traces

	Other Interesting Canvas Features
	Scaling
	Postscript Output

	Conclusion
	References

