
The powerful text widget in the Tk toolkit offers many facilities to writers of Tcl, Perl 
and Python scripts.

The Tk text widget
All script writers need to deal with textual data at one time or another. One of the 
most powerful tools for manipulating text in the free software world is the text widget 
found in the Tk Graphical User Interface (GUI) toolkit. This widget is available to 
script writers working with Tcl, Perl/Tk and Tkinter in Python, and boasts features 
and functionality which can solve just about any text related requirement a script 
writer is likely to encounter.
Key features include multi-line text display and editing, comprehensive text 
formatting, embedded images, embedded widgets, and a unique, almost boundless 
mechanism for endowing dynamic behaviour on areas of text.
This article discusses the features of the Tk text widget which make it a rich and 
dynamic text manipulation utility. Examples will be presented in Tcl/Tk code, but 
users of other languages shouldn’t have much trouble translating the concepts and 
examples to their favoured environment.
Before we get started, we need to take a quick look at a couple of concepts employed 
by the widget.

Indices in the text
Each character stored in a text widget can be addressed by an “index”. An index is 
most often defined by two numbers: the line number, and the character position on 
that line, so the index “10.45” refers to the character on line 10, position 45.
The text widget has built in functionality for index arithmetic – it supports 
expressions which allow you to find a location, say, 10 lines and 15 characters from a 
given point. It also handles special indices containing a pixel location (specified as 
“@x,y”), or containing certain words. For example, “1.end” means the character at the 
end of the first line, “insert” means the character at the input cursor and “current” 
means the character under the mouse pointer.

Tagging parts of the text
The feature which provides the Tk text widget with much of its power is known as 
“tagging”. Any area of the text, defined as starting at one index and ending at another, 
can be “tagged” with a logical tag name. Each tag can be assigned certain attributes 
and properties, and all the areas of text which have been given that tag will 
immediately take on the assigned properties. A good part of this article will discuss 
the properties which can be controlled, and the uses this tagging feature can be put to.

Text formatting features
The Tk text widget provides all the facilities required for rich text editing. This 
includes flexible font handling, adjustable line spacing and margins, word wrap, 
colour support, cut, copy and paste, an undo stack and the usual array of bold, 
underline, italic and other formatting options. Figure 1 is a screenshot of one of the 
demonstration scripts supplied with Tk. It shows some of the formatting options 
available.



Using tags to control text formatting
All formatting is implemented using the tags mechanism. The script writer defines a 
tag with the formatting required, then either inserts the required text with that tag, or 
“applies” that tag to an area of text already in the widget. For example, for an 
individual text widget named “.t”, a title tag might be defined with a large, underlined 
font, and centre justification:

.t tag configure title -font "helvetica 14" \
                       -justify "center" \
                       -underline on

To insert some title text into the widget, this code can be used:

.t insert 1.0 "The Legend of Black Cave\n" title

This inserts the text at line 1, position 0, with the tag “title” applied. Alternatively, the 
tag can be applied to text already in the widget using code like:



.t tag add title 1.0 1.end

This adds the title tag to the text between the given indices – in this case between the 
start and end of line 1. In a more realistic situation those indices wouldn’t be hard 
coded. They are more likely to be calculated from the location of the selection, for 
example, or the results of a search. Note the command used to assign a tag to an area 
of text is “add”. This is because an area of text can have several tags assigned to it. 
For example, our title text might also need to be highlighted as the result of a search, 
or to indicate its status has changed to urgent.
Figure 2 is a screenshot of a small script which demonstrates formatting via tag 
manipulation. It also demonstrates the text widget’s useful ability to save “marks” – 
named locations – anywhere in the text.
This script is available for download – see the resources section at the end of this 
article for the URL.

Embedding images and widgets
As well as text formatting, the Tk text widget also supports the embedding of images 
and other GUI control widgets.
When images are inserted into the text, they “float”, so editing of the text around them 
causes them to move in accordance with the formatting rules configured for that area 
of text. The same image can be inserted into the widget multiple times, and if an 
image is dynamically modified elsewhere in the script, its representation in the text 
widget will be updated immediately.
Other Tk GUI widgets can also be inserted into the text widget. Simple buttons and 
dropdown lists, as might be found amongst the text of a web page, are just the start. It 
is possible to embed anything – a drawing canvas, a table or even another text widget. 
If you have a complicated set of widgets which need to be presented inside some text, 
the text widget has a mechanism whereby it will only create those widgets when 
necessary – when the appropriate area is scrolled into view for example.



Advanced features
Text formatting and image and widget presentation is just the top layer of the text 
widget’s box of tricks. Tags provide an extensive array of facilities which can add 
intriguing dynamic abilities to pieces of text.
In order to make some of the following concepts a little clearer, another small 
demonstration script is available for download from the Linux Journal FTP site. This 
script creates a text widget and loads it with the contents of an XML file. Areas of the 
text are tagged according to their position in the XML structure. Figure 3 shows this 
script running with my Konqueror bookmarks file as its input.

Searching
The text widget has its own built in search mechanism. A simple search command 
looks like this:

.t search $searchText 1.0 end

This will return the index of the first occurrence of the string in $searchText between 
the start of the text (index “1.0”) and the end (index “end”). Implementing a “find 
next” feature is as simple as changing the starting position for the search to the 
location the last find returned. 
Searches can be configured to go forwards or backwards, be case insensitive, or be 
made to look for regular expressions as opposed to fixed strings.

Tag and Bind
All of the above demonstrates that the Tk text widget is a flexible solution to most 
text formatting and editing requirements. However, there’s more power to be explored 
yet, and this is where the programmer needs to start employing some imagination! 
This extra power is opened up with the text widget’s “bind” subcommand



Binding Events
The bind subcommand associates a Tcl script with the occurrence of an X event 
within a text widget, often, but not necessarily, over a tagged area of text. A simple 
example might be a mouse over – when the X system reports that the mouse pointer 
has been placed over a piece of tagged text, we might want to change the mouse 
pointer shape. Code to bind such an event looks like this:

.t tag bind mouseover <Enter> {.t configure -cursor center_ptr}

.t tag bind mouseover <Leave> {.t configure -cursor xterm}

The X <Enter> event is received when the mouse pointer enters a certain screen 
location, and the <Leave> event is received when it leaves it. In this case the “screen 
location” is any area of text in the .t widget which is tagged with the “mouseover” tag. 
In this simple example the script run in each case is just a one liner which 
reconfigures the text widget with a new mouse pointer shape. In a more advanced 
example perhaps some bubble help would appear, or an acronym would be expanded, 
or maybe more details could be presented from a database lookup. The only limitation 
is what can be achieved in the fairly limited timeframe. Given modern hardware and 
fast scripting languages like Tcl, Perl or Python, a surprisingly large amount of code 
can be executed within a mouse movement.

Hyperlinks
All X events can be utilised by the bind command, including mouse clicks. An 
obvious use for this is a hyperlink. Setting up the binding is as simple as before:

.t tag bind hyperlink <Button-1> {clickLink %x %y}

Now, whenever mouse button 1 is clicked over any text tagged with the “hyperlink” 
tag, the Tcl procedure “clickLink” is called. The %x and %y are replaced by the bind 
mechanism with the pixel coordinates of where the mouse click happened. This 
allows us to find the clicked piece of text. The clickLink procedure, which assumes 
the clicked text contains a URL, looks like this:

proc clickLink { xpos ypos } {

    set i [.t index @$xpos,$ypos]
    set range [.t tag prevrange hyperlink $i]
    set url [eval .t get $range]
    catch { exec mozilla $url & }
}

This code finds the index of the character clicked on using the “@x,y” syntax of the 
text widget’s index subcommand. It then uses that index to find the range of text 
covered by that occurrence of the hyperlink tag. It then gets that piece of text – the 
URL – and hands it over to, in this case, Mozilla. The catch command prevents the 
script from stopping if there’s a problem starting Mozilla. I’ve omitted error handling 
for simplicity - obviously in a real example a problem with Mozilla would need to be 
handled smoothly. Witness the power of this tag-and-bind approach – hyperlinks 
implemented in less than 10 lines of code!
Hyperlinks are a fairly obvious use for this functionality, so let’s consider some 
alternatives. Imagine an email client where the user clicks on a subject line in one text 
widget and sees the text of the email in another. Imagine a programmer’s editor where 
you can click on a keyword or function and see a summary of the syntax it requires. 



How about a database front end, where the user hovers the mouse pointer over a table 
name and sees the structure of that table? These sorts of features are simple to 
implement with the tag and bind approach.

Caveats
There are very few problems with the Tk text widget. When a tool has been around 
for as long as this one, it gets honed closer to perfection with each release.
There is one significant problem with the widget as it stands, however. In order to get 
the full benefits of margin handling and the like, text needs to be inserted without 
newline characters. That is, each paragraph needs to be one long string with a newline 
at the end. This allows the word wrapping to work properly. However, the widget’s 
default keyboard navigation behaviour is that pressing the up or down arrow key 
moves up or down a real line, rather than a displayed line. The effect is to skip up or 
down a paragraph at a time instead of a line, and so the only way to move to the 
middle of a paragraph is to hold the right arrow key and allow the cursor to work its 
way across and downwards.
Given the quality of thought and implementation which has clearly gone into the rest 
of the widget it’s hard to see how this behaviour has been tolerated for so long. The 
problem has finally been addressed for Tk 8.5, which, as of this writing, is in Alpha 
release. In the meantime the Tcler’s Wiki has a workaround which installs more 
sensible behaviour – see the resources section.

Conclusion
The Tk text widget is a remarkably powerful tool available to script writers who work 
with Tcl, Python and Perl. In its basic form it allows multi-line text entry, with rich 
text formatting and undo facilities where appropriate. Its more powerful features 
provide a framework for implementing all sorts of interesting facilities, including 
image handling, embedded GUI controls, mouse overs and hyperlinks.
If your application involves the manipulation or presentation of textual information, 
the abilities of Tk’s text widget should not be overlooked.

Resources
Tcl/Tk headquarters:
http://www.tcl.tk

The Tcl/Tk text widget man page:
http://www.tcl.tk/man/tcl8.4/TkCmd/text.htm

The Tkinter text widget reference page:
http://www.pythonware.com/library/tkinter/introduction/text.htm

Demonstration scripts used in this article:
ftp://ftp.scc.com/somewhere1.tar.gz

The Wiki text widget page, with lots of uses and examples:
http://mini.net/tcl/text

Wiki workaround for strange cursor behaviour:
http://mini.net/tcl/3082

http://mini.net/tcl/3082
http://mini.net/tcl/text
ftp://ftp.scc.com/somewhere1.tar.gz
http://www.pythonware.com/library/tkinter/introduction/text.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/text.htm
http://www.tcl.tk/

	The powerful text widget in the Tk toolkit offers many facilities to writers of Tcl, Perl and Python scripts.
	The Tk text widget
	Indices in the text
	Tagging parts of the text

	Text formatting features
	Using tags to control text formatting
	Embedding images and widgets

	Advanced features
	Searching
	Tag and Bind
	Binding Events
	Hyperlinks

	Caveats
	Conclusion
	Resources

