
Using Starkits for Application Deployment
Most enterprise level software applications are complex affairs. They normally consist
of the program code itself, plus libraries, runtime data, images, user configuration
information, icons, help text, and often plenty more. Such complexity raises a number
of problems, starting with issues of distribution and installation, through support and
upgrades, to issues of security following uninstallation. Where an application is being
distributed to hundreds of desktops in a large corporate roll out, these problems
become enormous, and often present major headaches to development and
administration staff.

Package management, using RPM, DEB, TGZ and the like, goes some way to
alleviating some of these issues, but it doesn’t solve them all. Users are frequently
confused by dependency issues, and ensuring all sensitive user configuration files are
cleaned up during uninstallation can be tricky. Package management provides very
few features useful to an engineer trying to figure out why an application isn’t running
properly on a user’s machine. More importantly, given the number of Linux
distributions, the versions of those distributions in use at any one time, and the
varying package management tools they all use, trying to maintain a complete set of
packages for all versions of Linux is a nightmare. If the application needs to run on
UNIX, Windows or Mac OS X as well, the problems are compounded.

What is required is a simple packaging method whereby an entire application could be
packaged, distributed, installed and executed all as one single file. This one file would
need to contain the program, its libraries (scripts and binaries where appropriate), its
runtime data files, user configuration files, and everything else needed to run the
application on any Linux distribution, and, where possible, on UNIX, Windows or the
Mac.

Although this sounds extremely difficult for most languages, Tcl/Tk developers have
actually been deploying applications in this way for several years. The technology
behind this technique goes by the generic name of “Starkit”, short for STand Alone
Runtime Kit. This article will explain the concepts, benefits and uses of the method.

The Starkit solution
Starkits are a neat and innovative idea, and not only do they solve the immediate
problems of distribution and deployment, they open up a whole range of new
possibilities, ones which dramatically assist developers in application creation and
maintenance.

A starkit, in a nutshell, is a complete application which is packaged up into a single
file. “Complete application” here means everything the application needs to run. This
includes the Tcl/Tk scripts, any binary libraries, the required data files, help files and
so on. All of this information is packed into the Starkit file and transparently
compressed or encrypted to save disk space or provide a level of code privacy. It is
this Starkit which is distributed to the end user.

A Starkit file is not directly executable. In order to run it still needs a complete Tcl/Tk
environment, and this is provided by what is called a Tclkit. A Tclkit is provided to the
end user in one of two ways: either separately, or bundled together with the Starkit in
one big executable file called a Starpack. Table 1 outlines the terminology.

Tclkit The complete Tcl/Tk scripting language, packed into a single binary
package.

Starkit A Tcl/Tk application inclusive of scripts, libraries and compiled C code,
bundled into a single file. Executed using the Tclkit binary.

Starpack A Tclkit and a Starkit, bundled together into a single executable file.

At first glance the Starpack appears to be the ultimate solution. It’s a genuine single
file solution – language and application all bundled together as one executable file.
The truth is, however, that while Starpacks are a very popular method of distributing
applications, the benefits of using a separate Starkit and Tclkit frequently outweigh
the single file convenience of the Starpack. To see why this is, we need to look a little
closer at the anatomy of a Starkit.

Inside Starkits
Normally when a developer is writing an application they will have a number of files
scattered across a number of subdirectories. The top level directory might contain the
starting point, perhaps called main.tcl. From that point one might see a lib
subdirectory containing library code, an images directory containing a splash screen
or some icons, a data directory containing runtime data files and so on. Such a
structure might look like Figure 1.

Starkits are a single file packaging of a complete filesystem hierarchy. They normally
contain the exact hierarchy the developer uses to build the application. This is
achieved using Tcl’s Virtual File System (VFS) facility, which is explained in detail in
the sidebar. Since Starkit based applications run in the same filesystem hierarchy the
developer uses to create and test the application, no repackaging is required, and nor
is any extra testing needed to ensure the application still runs in a different
environment.

Running Starkits
In order to run a Starkit, a Tclkit is required. A Tclkit is a binary executable,
containing a packaging of the complete Tcl/Tk language compiled for the end user’s
platform. Precompiled Tclkits are available for many different platforms, including
Linux, Win32, Solaris, HPUX, *BSD and others. The complete source is available for
those running more obscure systems.

The Tclkit will take a Starkit file, mount the VFS inside it, then run the main.tcl script
found in that VFS. The fact that the application is running inside a virtual filesystem
is transparent; everything happens exactly as if the Tcl/Tk application were running
normally in the machine’s native filesystem.

The Tcl Virtual File System makes Starkits writable as well as readable. This means
that the application can save its state and the user’s configuration files inside its own
Starkit package. Nothing important needs to be stored in a hidden directory in the
user’s home directory, or in a registry entry. As well as the obvious simplification of
backups, this has a few important implications.

Firstly, the user can copy their Starkit file to another machine and immediately have
their application and data running there. Moving an entire project from work to home
requires copying one file onto a laptop or floppy disk.

Secondly, when a user experiences a problem with their Starkit based application, an
engineer can request they email the Starkit to the support desk. The engineer can them
examine the exact system the user is running – code, data, configuration and all.
When the problem is fixed, the engineer can email the patched Starkit straight back to
the user.

Thirdly, secure uninstallation is simple: simply delete the Starkit after use. There will
be no sensitive data files or cache entries hidden away ready for investigation by
prying eyes.

Finally, all this self containment means significantly more robustness. The user is
unable to delete or uninstall any files vital to the application’s well being, and the
application is immune to the “DLL hell” sometimes caused by component upgrade.

Using Starpacks
As described previously, a Starpack is the bundling of a Tclkit and a Starkit all in one
executable file. When a Starpack is executed, the Tcl/Tk language inside the
embedded Tclkit is unpacked and given control. Once it has initialised, it loads the
embedded Starkit – that is, the actual application – and executes it.

For many applications Starpacks appear to be the cleanest solution to issues of
distribution and deployment. They come as a single file which saves the user having
to download and install the Tclkit and Starkit separately. They are completely opaque,
which means the user need never even know they are running a script. They also
remove the (admittedly limited) threat of a future incompatibility between a Starkit
and a previously installed and obsolete Tclkit.

For some consumer based applications Starpacks are indeed the best way to go, but
there are some distinct disadvantages too. Firstly, they are much bigger than Starkits.
Starkits only contain the program and its required data. Adding the entire Tcl/Tk
language to the package adds a megabyte or so. Secondly, since the package is a
compiled binary executable, Starpacks only work on one platform. Thirdly, and
perhaps most importantly, Starpacks cannot modify themselves. The contents are read
only, so saving configuration information inside the package is not possible.

One common middle-ground approach is to create an installable package for the target
system – an RPM or DEB file, say - which contains just two files: the Tclkit and an
skeleton of the application Starkit. Both of these files can be put somewhere
distribution agnostic, such as /usr/bin. On first execution, the application Starkit
copies itself to the user’s home directory, and it is that copy which is actually
executed and updated with user specific data. This approach is a fair compromise for
many situations

Uses of Starkits
Starkits are a flexible technology. Some of the more common uses are:

• Application deployment, as discussed in this article. They are perfect for when
an application needs easy installation and easy uninstallation leaving the host
system untouched. On UNIX platforms, Starkits are an alternative for shar
archives.

• Cross platform deployments, for when an application needs to run from, or be
regularly moved across, Windows, Macintosh or UNIX platforms. Where
necessary, a Starkit can contain binary files suitable for three different
platforms, and the platform independent script part of the application can
decide at runtime which file – DLL or shared object – to load.

• Complex deployments, like games, which often need significant intelligence
to deploy properly. Instead of having a choice of 30 different RPM, DEB and
TGZ files to download from, the user can download a single file which
contains all the material and intelligence required to install and uninstall
correctly. It is not unusual for a Starkit to contain an application which is
basically written in C, but which has a Tcl/Tk front end simply in order to
facilitate Starkit deployment and installation.

• Application demonstration. A Starkit and a Tclkit on a CDROM provide a
complete application on a single disk. It can be run immediately with no
installation necessary.

• Wikis and online help systems. A Starkit containing the TclHttpd “server in a
script” program makes an excellent base for dynamic information systems like
Wikis. Taking a complete Wiki application, server and all, from one machine
to another on a single floppy disk makes for a compelling demonstration!

• Database systems. The Tclkit package contains a complete, built in database
server system named MetaKit, embedded into the core Tcl/Tk language. A
Starkit can use this server to store and query either data vital to its own
execution (like a star map in an astronomy application), or data which the user
provides (like names and addresses in an address book application).
Conventional, external database servers can, of course, also be accessed.

Conclusion
Starkits are one of the features of the Tcl/Tk language which make it so compelling.
They enable cross platform application execution in a way that is robust, simple and
very easy to work with. In doing so, they solve so many problems associated with
application deployment and execution, and open up so many new avenues of
functionality, one has to wonder why all languages don’t have something similar.

Sidebar - The Tcl Virtual File System
The Tcl Virtual File System (VFS) was added to the language at version 8.4.0,
released in 2002. The aim of the VFS is to provide a “filesystem in a file” facility at
the script level. The filesystem can contain scripts, libraries, runtime data, images,
XML, configuration information, or any other kind of files, all contained inside a
normal subdirectory structure. A VFS is “mounted” and “unmounted” as required.

Advanced Linux users will immediately recognise this concept as being the same as
the Linux loopback mounting facility, and that’s exactly what it is. However, since it’s
implemented in the Tcl language core, and exposed at the script level, the facility is
fully cross platform and doesn’t require root system privilege in order to use.

However, there’s more to the Tcl VFS implementation than simple files. A complete
API of file related operations is exposed at the script level, which means a
programmer can mount any supported “filesystem”. Filesystems supported out of the
box include ZIP, TAR, FTP, HTTP and several others. A developer can also
reimplement – at the script level – the “open”, “close”, “read” and “write” commands
(plus several others), in order for their “filesystem” to open a database, or a
connection to a piece of hardware, or just about anything else they can think of.

Note that the VFS implementation exposes the “write” script level command, which
means virtual filesystems are writable, as well as readable. Configuration data, or any
other form of user specific data can be saved into the VFS, and that data is
immediately available the next time the VFS is mounted.

A very simple, file based implementation of the VFS concept is behind the packaging
of Starkits. If one unpacks a Starkit, a complete file system will be found inside it,
containing directories full of scripts, images, data and so on. The Tclkit simply
mounts this VFS and runs the main script inside it. Since all the data required to run
the script is in the VFS too, no access to files on the external native filesystem is
necessary.

	Using Starkits for Application Deployment
	The Starkit solution
	Inside Starkits
	Running Starkits
	Using Starpacks
	Uses of Starkits
	Conclusion

	Sidebar - The Tcl Virtual File System

