
Creating and Using Patches to OSS
Most software developers who work in the open source and free software
communities will at some point need to exchange modifications to source code. Most
people first encounter this when they need to update a piece of software they have
compiled from source. The update will invariably arrive in a patchfile, and the
developer is expected to know what to do with it. Alternatively a developer might find
a problem with some software, then examine the source code and work out a fix. The
code maintainer will request a patch for the bug fix and under these circumstances the
developer would be expected to know how to generate such a patch.
Dealing with patches, either as creator or consumer, is considered a routine part of
working in the open source and free software fields, but is often completely alien to
those entering the community from the proprietary software world. This article
introduces the tools required to work with patches – patch and diff.
patch is a tool that takes a patchfile – the details of the modifications – and applies
them to the original version of some code in order to create a new, updated version.
Before we look at patch, however, in order to understand the complete picture we
must start by looking at another tool, called diff.
diff is short for difference, and as the name implies its purpose is to report the
differences between two files. diff actually works on any text file, not just program
source files, and so is a very useful tool in its own right. In the context of distributing
source code updates, diff is asked to report the differences between the old, original
version of a source file and the new, modified version, then the output is captured and
saved to a file known as a patchfile. A patchfile can be read by the patch tool which
understands how to take a set of differences and apply them to the original source file,
thus ending up with a copy of the new source file. We’ll look at the use of patch in a
moment, but first let’s look at a few of the details involved in using diff.

Using diff
diff is a powerful tool in its own right, but for the purposes of generating patchfiles
only a small subset of its features are required. In the majority of cases, and unless a
project maintainer specifically asks otherwise, diff should be used to create a patchfile
in what is known as unified diff format.
Unified diff format contains more information than the normal diff format. In
particular, each difference is shown with a few lines of the surrounding unchanged
text above and below it. These context lines allow a reader (machine or human) to
more easily work out what has been changed. A unified diff patchfile is created by
supplying the –u flag to the diff command like this:

diff –u file_old.c file_new.c > patchfile

The two files are given on the command line, with the original file first and the new,
edited version second. It isn’t really necessary to understand the format of the diff
output (i.e. the contents of a patchfile), either to create them or use them, but a basic
understanding of the format can be useful to check things look right. Applying the
above example to a file containing one digit per line (on the left of the figure below)
and an edited version of it (on the right):

1 1
2 2
3 3
4 4

5 five
6 6
7 7
8 8
9 9

results in this patchfile:

--- numbers.txt.orig 2004-05-28 18:08:55.000000000 +0800
+++ numbers.txt 2004-05-27 15:16:18.000000000 +0800
@@ -2,7 +2,7 @@
 2
 3
 4
-5
+five
 6
 7
 8

The line containing --- shows the name of the first file – the original text. The line
containing +++ shows the name of the second file – the modified text. The modified
file should take the real filename, as it will appear on the patch user’s system. The line
that starts @@ shows the line numbers where the modification has happened, and
below that is a block – known as a hunk - which shows the actual change. A line
starting with a ‘–‘ indicates that the line appears in the original file but doesn’t appear
in the modified file. A line starting with a ‘+’ indicates that the line wasn’t in the
original file, but now appears in the modified file. When one or more ‘–‘ lines appear
followed by one or more ‘+’ lines, like in this example, it means some text has been
removed and replaced. In this case I took out the line containing ‘5’ and replaced it
with a line containing ‘five’. The other lines, containing the numbers 2, 3 and 4, and
6, 7 and 8, are the context lines. These are the lines on either side of the change which
weren’t modified. If you’re familiar with the source file these lines help make the
patchfile more readable.
This is obviously a very simple example. Real patchfiles almost always detail large
sections of code which have been removed, added and replaced, and there might be
dozens of hunks per patchfile. A real patchfile is often an alarming sight to the
inexperienced, but don’t be intimidated by them. As indicated above, it is rare that a
human needs to really understand a patchfile. As long as a quick skim read shows that
the hunks reflect changes to the right files, and that a 3 line change hasn’t somehow
resulted in a 300K patchfile, all that matters is that the patch tool understands the
details.

Using patch
patch is the other half of the diff/patch pairing, and is the tool used by the patchfile
‘consumer’. patch will take a copy of the original file, examine the difference
information in the patchfile, and will then apply those differences as changes to the
original file resulting in a copy of the modified file. As we’ve seen, the unified diff file
format describes the changes in compete detail – what has been removed, what has
been added, and the line numbers where the modifications take place.
patch is smart enough to notice when the line numbers it finds in the patchfile don’t
match up with the lines that have been reportedly removed or added. This might
happen if the source file the patch was created from isn’t identical to the source file
the patch is being applied to, perhaps because work has already been performed on

the local code. In these cases patch can use the context lines around each hunk to try
to pin down exactly where the change needs to be applied. Obviously this system isn’t
foolproof, but if the changes that have been made to the local source file aren’t too
severe, patch will often succeed in patching an already modified file. This is very
useful if you receive two patches to the same file at the same time – they can be
applied consecutively and there’s a fair chance they will both succeed.
patch takes the patchfile on its standard input, so given the patchfile created in the
example above, and a copy of the original numbers.txt file in the current directory, the
edited version of the file can be obtained with this command:

> patch numbers.txt < patchfile
patching file numbers.txt

The filename is optional; if it is not specified patch will look in the patchfile to find
the name of the local file to patch based on the names of the files on the machine
where the patchfile was created. The heuristics used to find the name of the target file
are pretty good for most uses of patch, so it is normal to use the simplest patch
command:

> patch < patchfile

By default the patching happens “in place”, so to speak. Check the patch man page
for details on how to send the patched output to a different file, or to have backup files
produced automatically.

Patching Trees
Patching one file is easy, and is the accepted way to fix a simple bug or typo. A more
commonly experienced process is that of updating an entire software tree. When a
new version of a project is made available it is normal for the software maintainer to
provide a complete tarball of the whole source tree, together with a single patchfile
that can be applied to the old source tree to bring it up to the latest version. Anyone
who wants to start working with the project would download and unpack the tarball;
anyone who already has the previous version of the software only need to download
and apply the patchfile. patchfiles can be applied consecutively, so if your source tree
is three versions behind the bleeding edge, you can download and apply the last three
patchfiles one after the other to come up to date. This is almost always faster than
downloading a whole new tarball.
As a patchfile creator, you should put the original and modified trees in the same
directory, then tell diff to operate recursively to produce a patchfile that encompasses
all the differences between the old files and the new ones. So, if I have just completed
the work to bring my project up to version 1.1, I need both the 1.0 and the 1.1 trees in
one subdirectory:

> pwd
/home/derek/project
> ls -l
drwxr-xr-x 2 derek users 48 2004-05-20 17:55 1.0
drwxr-xr-x 2 derek users 48 2004-05-28 11:49 1.1

To produce the patchfile I need to run diff in recursive mode, with the root
subdirectories as the parameters:

> diff –urN 1.0 1.1 > patchfile

The –r flag invokes the recursive operation, and the –N flag makes diff treat files
which are in one tree but not the other as new files (which allows patch to handle file
creation and deletion neatly). Although this is the most standard way of creating a
patchfile for a source tree, there are many options to diff which are useful in special
cases. These include options to ignore certain files, handle whitespace efficiently (so
simple differences in the use of tabs and spaces don’t create huge patchfiles), and
other more fundamental things, such as changing the heuristics of the difference
detection algorithm to favour, for example, large files. See the diff documentation for
details.
A patchfile for a source tree is applied by changing to the directory containing the root
of the original tree and using the command:

> patch –p0 < patchfile

The patch tool will automatically recognise that the patchfile contains a whole stream
of differences which it needs to apply over the entire tree.
The patch –p switch is one that is often required when patching entire source trees. By
default patch looks at the complete filename given in the patchfile, strips off all the
subdirectory part, then looks in the current directory for that file. For individual files
this approach works, but for patches containing alterations to lots of files in a source
tree it doesn’t. The –p switch controls how much of the subdirectory part of the
filename is stripped off, with –p0 meaning none of it. With –p0, all filenames are
taken from the patchfile in their entirety, which means as long as the directory names
in the local tree match those on the machine where the patch was created, the patch
will apply correctly. Unless you’ve renamed the directories in your source tree, -p0 is
all you need. You might, however, have your local source tree under a subdirectory
called, for example, project-latest, but the patch might have been created on a
system where the source tree was under a subdirectory named project-1.1. The
patchfile will therefore contain references to filenames which won’t be found on your
system and patching with –p0 won’t work. In this case you provide a positive number
to the –p switch, and it makes patch ignore that number of levels of subdirectory
within the filenames in the patchfile. For example, if a filename is detailed in the
patchfile as project-1.1/src/gui/main.cpp, and you use the switch –p1, patch
will ignore the first part of the filename so it becomes src/gui/main.cpp. Therefore
you can change into your project-latest directory and use the command:

> patch –p1 < patchfile

and the patch will work correctly.
patch tries hard to make your patchfile work. If it can’t find a particular file, it will
ask where that file is. If it finds a file that appears to have already been patched, it will
ask if you want reverse the patch – i.e. to back out the change and put the file back as
it was. If there is leading or trailing garbage or indenting in your patchfile, patch will
ignore it, which means you can save the contents of an email that contains a patchfile
and apply it directly. If all these processes fail and part of a patchfile doesn’t work
(maybe because you have made large changes to one of your source files), patch will
create a rejection file. This is a file with a .rej suffix which contains the hunk that
couldn’t be used. This is useful with a large patchfile where most of the hunks work
correctly, because it leaves you with the details of the piece that didn’t work. A
developer who is familiar with the structure of patchfiles can use the information in
the rejection file to finish the patching job by hand.

Conclusion
patch and diff are staple tools of the open source and free software communities. They
are used by virtually all developers who generate or apply software updates, either
directly from the command line, or indirectly though wrapping tools like CVS. They
are powerful, yet simple to understand and use, so anyone who wants to contribute
code only needs to spend a short time learning to use them. They are an excellent
solution to the most basic problem of distributed software development.

Bio
Derek Fountain is a freelance writer and software developer specialising in Linux and
open source scripting languages. He lives in Perth, Western Australia.

	Creating and Using Patches to OSS
	Using diff
	Using patch
	Patching Trees
	Conclusion
	Bio

